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Abstract

The paper presents a numerical solution of the problem of a hot rigid indenter sliding over a thermoelastic

Winkler foundation at constant speed. It is shown analytically that no steady-state solution can exist for su�ciently
high temperature or su�ciently small normal load or speed. The numerical solution shows that the steady-state
solution, when it exists, is the ®nal condition regardless of the initial conditions imposed. This suggests that the

steady-state is also stable.
When there is no steady-state, the predicted transient behavior involves regions of transient stationary contact

interspersed with regions of separation. Initially, the system typically exhibits a small number of relatively large
contact and separation regions, but as time progresses, larger and larger numbers of small contact areas are

established, until eventually the accuracy of the algorithm is limited by the discretization used. # 2000 Elsevier
Science Ltd. All rights reserved.

1. Introduction

When two bodies slide against each other, frictional heating at the interface causes thermoelastic

deformation which modi®es the contact pressure distribution. Hills and Barber (1986) gave an analytical

solution for sliding Hertzian contact, using a thermoelastic Green's function to reduce the problem to

the solution of an integral equation with a Bessel function kernel. A remarkable feature of their results

was that no steady-state solution could be found in certain ranges of the applied load and sliding speed

without violation of the unilateral contact constraints. Similar results were demonstrated by

Yevtushenko and Ukhanska (1993) for a problem with interfacial thermal contact resistance. Existence

theorems can be proved for the corresponding transient problem, so we must conclude that in these

parameter ranges the system must undergo periodic or random transient variations in contact
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conditions. Solution of the full transient thermoelastic contact problem is very di�cult because the
problem makes non-linear coupling between thermal and mechanical problem and in some cases leading
to instabilities, so in the present paper, we consider the simplest system that exhibits the same steady-
state characteristicsÐthe sliding without friction of a hot rigid perfectly conducting indenter over a
linear thermoelastic Winkler foundation. The Winkler foundation assumption could have a�ected the
outcome of the formulations and calculation. However, it might be su�cient to determine the predicted
transient behavior of contact regions.

2. Statement of the problem

Consider the problem illustrated in Fig. 1, where an indenter at temperature T0 is pressed into the
foundation with a force F and moves to the right at constant speed V. The mechanical behavior of the
foundation is de®ned by the statement that the local contact pressure p is proportional to the local
indentation u, i.e. u(x, t )= cp(x, t ), where c is the elastic foundation compliance. We also assume that
lateral thermal conduction in the foundation can be neglected so that it behaves like a set of parallel
one-dimensional rods oriented normal to the interface and each rod acts independently of its
neighbours.1

If contact with the indenter is established at a particular point x at time t � t0, the temperature for
y < 0, t > t0 is given by eqn (2.4.10) of Carslaw and Jaeger (1959) and the corresponding thermal
displacement on the surface ( y = 0) can be shown to be

d�x, t� � 2aT0

����������������������
k�tÿ t0 �=p

p
, �1�

where a, k are respectively the coe�cient of the thermal expansion and thermal di�usivity for the
material. If contact at x ends at t � t1, the thermal displacement will remain constant at the value
d�x, t1� for t > t1.

Fig. 1. Geometry con®guration of transient thermal contact.

1 This is quite a good approximation for the thermal behavior of a half-space if the Peclet number is su�ciently high.
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Using these results, the gap functions can be de®ned as follows,

g�x, t� � g0�x, t� ÿ d�t� ÿ d�x, t� � u�x, t�, �2�
where

g0�x, t� � �xÿ Vt�2=2R �3�
is the gap between the indenter and an undeformed foundation and d is an unknown rigid body
displacement which will generally vary with time.

The boundary condition for contact and separation regions can be written

separation p�x, t� � 0; g�x, t� > 0; contact p�x, t� > 0; g�x, t� � 0 �4�
and equilibrium requires that

F �
�
C

p�x, t�dx, �5�

where C is the contact region. In the formulation of governing equation and boundary condition for
contact and separation, the unknowns are d(t ) and p(x, t ). The problem is solved for contact and
separation region when time evolves. Additionally d(t ) is also found at each time step.

3. Dimensionless formulation

The number of independent parameters can be reduced by utilizing the self-similarity of the punch
pro®le. There are two length scales in the problem: (1) the radius R and (2) a force-related quantity
L � ���������

cFR3
p

. We de®ne the dimensionless coordinates x̂ � x=L, t̂ � Vt=L and other dimensionless
quantities through d̂�Rd=L2, ĝ�Rg=L2, d̂�Rd=L2, p̂� cRp=L2. Introducing these de®nitions into eqns
(1, 2, 3, 5) yields

d
ÿ
x̂, t̂

�
�

������
3l
2

r ������������������
t̂ÿ t̂0�x̂�

p
; t̂0�x̂� < t̂ < t̂1�x̂� �6�

ĝ
ÿ
x̂, t̂

�
ÿ p̂

ÿ
x̂, t̂

�
� �x̂ÿ t̂�2

2
ÿ d̂�t̂� ÿ d

ÿ
x̂, t̂

�
, �7�

and �
Ĉ

p̂
ÿ
x̂, t̂

�
dx̂ � 1, �8�

where l � 8a2T 2
0kR=�3pcFV �.

Notice that with this formulation, the only dimensionless parameter governing the evolution of the
process is l which can be seen as a ratio between thermoelastic and elastic e�ects.

The contact boundary conditions (4) show that at least one of ĝ, p̂ must be zero for all x̂ and that the
other cannot be negative. Thus, if the right-hand side of eqn (7) can be calculated, a positive value will
indicate a state of separation and will be equal to the local value of ĝ, whereas a negative value will
correspond to contact and will be equal to the local value of (ÿp̂).
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4. Steady-state solution

Since the contacting body moves at constant speed, it is natural to expect the long-time behavior to
become invariant in a frame of reference moving with the body. In particular, the indentation d̂ would
then be independent of t̂. Denoting the value of this constant by d0, we can then ®nd the leading edge
â�t̂� of the contact area by enforcing ĝ � 0, p̂ � 0 in eqn (7), with the result

�âÿ t̂�2
2

� d0, �9�

since the thermal expansion must be zero before contact starts. It follows that â�t̂� � �������
2d0
p � t̂, or

alternatively that t̂0�x̂� � x̂ÿ �������
2d0
p

.
The expansion in the contact area can now be calculated from eqn (6) and the contact pressure from

(7), with the result

p̂
ÿ
x̂, t̂

�
� ÿ�x̂ÿ t̂�2

2
� d0 �

������
3l
2

r ���������������������������
t̂ÿ x̂�

�������
2d0

pq
: �10�

The trailing edge of the contact area b̂�x̂� is de®ned by the condition that the contact pressure goes to
zero. One solution of the resulting equation is clearly â�t̂� and the other is the one real root of the cubic
equation � �������

2d0
p � t̂ÿ b̂� � �������

2d0
p ÿ t̂� b̂�2�6l. Once â, b̂ have been determined, the corresponding value of

l can be obtained from eqn (8).
The special case is where d0 � 0 has a simple solution, since we then have â�t̂� � t̂ from (9) and

b̂�t̂� � t̂ÿ �����
6l3
p

. The corresponding pressure distribution is

p̂
ÿ
x̂, t̂

�
� ÿ�x̂ÿ t̂�2

2
�

������
3l
2

r �����������
t̂ÿ x̂

p
, �11�

and eqn (8) then yields

1 �
�â
b̂

p̂
ÿ
x̂, t̂

�
dx̂ �

� ����
6l3
p

0

 ������
3l
2

r ���̂
y

p
ÿ ŷ2

2

!
dŷ � l, �12�

where ŷ � t̂ÿ x̂.
Only positive values of d0 are admissible and it can be shown that the integral in (8) is a

monotonically increasing function of d0 in the range d0 > 0. Thus, there is no steady-state solution of
the assumed form if l > 1. In other words, steady solutions do not exist at su�ciently large values of
temperature di�erence or su�ciently small values of force or velocity.

To determine how the system behaves at large values of time for l > 1, a numerical solution of the
problem has been developed, which is described in the next section.

5. Numerical implementation

The contact problem can be discretized in space and time by dividing the elastic foundation into
discrete strips of width Dx̂ and proceeding in increments of time Dt̂.

It is convenient to take the vertical rigid body displacement d̂�t̂j � as a fundamental variable de®ning
the evolution of the process, where t̂j is the time after the j-th time increment. If d̂�t̂j � were known for all
j, the trajectory of all points on the moving body would also be known and hence we would be able to

Yong Hoon Jang / International Journal of Solids and Structures 37 (2000) 1997±20042000



determine the time t̂0�x̂i � at which any given element at x̂i comes into contact. The subsequent thermal
expansion could then be determined for each x̂i from eqn (6) and the contact pressure p̂�x̂i, t̂j � from eqn
(7). A negative value of p̂�x̂i, t̂j � at any contacting element indicates loss of contact and could be used to
set the value for t̂1�x̂i �.

Of course, d̂�t̂j � is not known a priori. Instead, it must take whatever value is required to satisfy the
equilibrium condition (8), which in discretized form can be written

S �
X
i2Ĉ

p̂
ÿ
x̂i, t̂j

�
Dx̂ � 1, �13�

where Ĉ is the set of nodes in contact. The relation between S and d̂ is non-linear because the contact
area Ĉ varies with d̂. In the numerical solution, we must therefore determine d̂ at each time step by
iteration. We take the value of d̂ at the previous time step as an initial guess for this process. The right-
hand side of (7) can then be calculated for all nodes and those in which negative values are obtained
correspond to contact nodes, which make a contribution to the sum in eqn (13). The value of S so
calculated will generally di�er from unity and we therefore make a correction to d̂ using the algorithm

d̂new � d̂old � 1ÿ S

NCDx̂
, �14�

where NC is the number of elements in Ĉ at the previous iteration.
Equation (13) shows that this would yield the correct value of d̂ in one iteration if the elements of Ĉ

were unchanged after the iteration. Of course, this is not generally the case, but convergence is found to
be very rapid and terminates completely once the increment in d̂ is small enough to have no further
e�ect on the set of contact nodes.

When the value of d̂�t̂j � has been established, the elements are scanned to determine which, if any,
change state from separation to contact or vice versa during the j-th time step, in order to set the
corresponding value of t̂0, t̂1 in eqn (6). The time can now be updated through

t̂j�1 � t̂j � Dt̂ �15�

and the process repeated inde®nitely.

6. Results

The results con®rm that for l< 1 the system settles into a steady state after an initial transient period.
This demonstrates that the steady-state solution is stable under transient perturbations. Figure 2 shows
the extent of the contact area and the rigid body penetration d̂ as functions of time t̂ for l � 0:9. The
indenter is assumed to be pressed against the foundation at t̂ � 0 and to start moving immediately at
speed V. In the initial transient, the leading edge of the contact area remains unchanged, whilst the
trailing edge moves, reducing the total extent of contact. During this period, thermal expansion forces
the bodies apart, causing d̂ to decrease. Eventually the expansion levels o� and the additional elastic
displacement associated with the reduction in contact area (and consequent increase in contact pressure)
allows d̂ to increase again, until a new separated contact area is established. A steady state, with a single
contact area, both boundaries of which move at speed V, is established after about t̂ � 5.

As l approaches unity, the duration of the initial transient increases and involves a succession of
separated contact areas and oscillations in the value of d̂. For values greater than unity, regions of
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alternating contact and separation occur for all time and the size of the typical contact area appears to
decrease continually as the state evolves.

Figures 3 and 4 show results for l � 1:5, 6, respectively. For Fig. 3 in the early stage, the same
explanation given for Fig. 2 can be used, and then its state is best characterized as contact with
numerous small intervening regions of separation, after about t̂ � 3. A corresponding small oscillation
occurs in the rigid body penetration d̂.

For l � 6, large separation zones alternate with relatively small zones of contact. Periodically the
penetration d̂ increases su�ciently for a new contact area to form (and hence expand) or lateral motion
permits the trailing contact zone to be lost.

This transient state does not appear to tend to a steady periodic state (e.g. one with equal-spaced
contact areas). Instead, contact areas appear randomly grouped, often in clusters. Also, the typical

Fig. 2. Extent of contact area and rigid body penetration d̂ as functions of time t̂ for l � 0:9.

Fig. 3. Extent of contact area and rigid body penetration d̂ as functions of time t̂ for l � 1:5.
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contact area size decreases as time progresses, ultimately approaching the level of discretization of the
algorithm.

7. Discussion and conclusions

This investigation presents a numerical solution to the problem of a hot rigid indenter sliding over a
thermoelastic Winkler foundation at a constant speed. The numerical solution shows that the steady-
state solution, when it exists, is the ®nal condition regardless of the initial conditions imposed. This
suggests that the steady state is also stable. When there is no steady state the predicted transient
behavior involves regions of transient stationary contact interspersed with regions of separation.
Initially, the system typically exhibits a small number of relatively large contact and separation regions,
but as time progresses, larger and larger numbers of small contact areas are established, until eventually
the accuracy of the algorithm is limited by the discretization used. This study also shows that for
su�ciently high temperature, low speed, or applied force, a moving indenter will not slide steadily over
a thermoelastic foundation, but instead will ride on a series of stationary thermoelastically generated
corrugations. Indications are that similar results will apply in the case of thermoelastic half-space.

A question exists as to how much the Winkler foundation assumption, which states that the local
contact pressure p is proportional to the local indentation, may a�ect the predicted contact behavior.
One of the limitations of the Winkler foundation assumption is that it does not consider the shear e�ect.
However, the assumption does not a�ect the main characteristics which determine if a steady state
solution will be achieved. As mentioned in the Introduction, Hills and Barber (1986) have shown that
no steady-state solution can occur for certain ranges of the applied load and sliding speed without
violation of the unilateral contact constraints. The numerical results obtained in the present study
con®rm their predicted phenomena; for l > 1, contact condition will be periodic or randomly transient.
Recall that the parameter l�� 8a2T 2

0kR=�3pcFV �� represents the thermoelastic and elastic e�ects. In the
Winkler foundation model, l is directly related to c, the elastic foundation compliance. For example, the
compliance value is small for a hard material. Thus, l is larger for a hard material than for a soft
material. So for a harder material, there is a greater chance that a steady-state solution will not be
achieved. On the other hand, our calculations may not predict the exact transient behavior of real
thermoelastic surfaces, but the calculations provide an indication that the periodic or random contact

Fig. 4. Extent of contact area and rigid body penetration d̂ as functions of time t̂ for l � 6:0.
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will occur under a certain range of applied load, sliding speed, and temperature. However, no progress
has been reported on this challenging unilateral boundary value problem.
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